

# FCA20N60F 600V N-CHANNEL FRFET

### **Features**

- 650V @T<sub>J</sub> = 150°C
- Typ. Rds(on)=0.15Ω
- Fast Recovery Type (  $t_{rr} = 160 \text{ns}$  )
- Ultra low gate charge (typ. Qg=75nC)
- Low effective output capacitance (typ. Coss.eff=165pF)
- 100% avalanche tested
- RoHS Compliant



TO-3PN FCA Series

# Description

SuperFET<sup>TM</sup> is, Fairchild's proprietary, new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

December 2008 SuperFET™

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET is very suitable for various AC/DC power conversion in switching mode operation for system miniaturization and higher efficiency.



## **Absolute Maximum Ratings**

GDS

| Symbol                           | I Parameter Drain-Source Voltage                                                |                                                                          |             | FCA20N60F   | Unit<br>V |  |
|----------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------|-------------|-----------|--|
| V <sub>DSS</sub>                 |                                                                                 |                                                                          |             | 600         |           |  |
| Ι <sub>D</sub>                   | Drain Current                                                                   | - Continuous (T <sub>C</sub> = 25°<br>- Continuous (T <sub>C</sub> = 100 |             | 20<br>12.5  | A<br>A    |  |
| I <sub>DM</sub>                  | Drain Current                                                                   | - Pulsed                                                                 | (Note 1)    | 60          | A         |  |
| V <sub>GSS</sub>                 | Gate-Source voltage                                                             |                                                                          |             | $\pm 30$    | V         |  |
| E <sub>AS</sub>                  | Single Pulsed Avalanche Energy                                                  |                                                                          | (Note 2)    | 690         | mJ        |  |
| I <sub>AR</sub>                  | Avalanche Current                                                               |                                                                          | (Note 1) 20 |             | А         |  |
| E <sub>AR</sub>                  | Repetitive Avalanche Energy                                                     |                                                                          | (Note 1)    | 20.8        | mJ        |  |
| dv/dt                            | Peak Diode Recovery dv/dt                                                       |                                                                          | (Note 3)    | 50          | V/ns      |  |
| P <sub>D</sub>                   | Power Dissipation $(T_C = 25^{\circ}C)$<br>- Derate above $25^{\circ}C$         |                                                                          |             | 208<br>1.67 | W<br>W/°C |  |
| T <sub>J,</sub> T <sub>STG</sub> | Operating and Storage Temperature Range                                         |                                                                          |             | -55 to +150 | °C        |  |
| Τ <sub>L</sub>                   | Maximum Lead Temperature for Soldering Purpose,<br>1/8" from Case for 5 Seconds |                                                                          | pose,       | 300         | °C        |  |

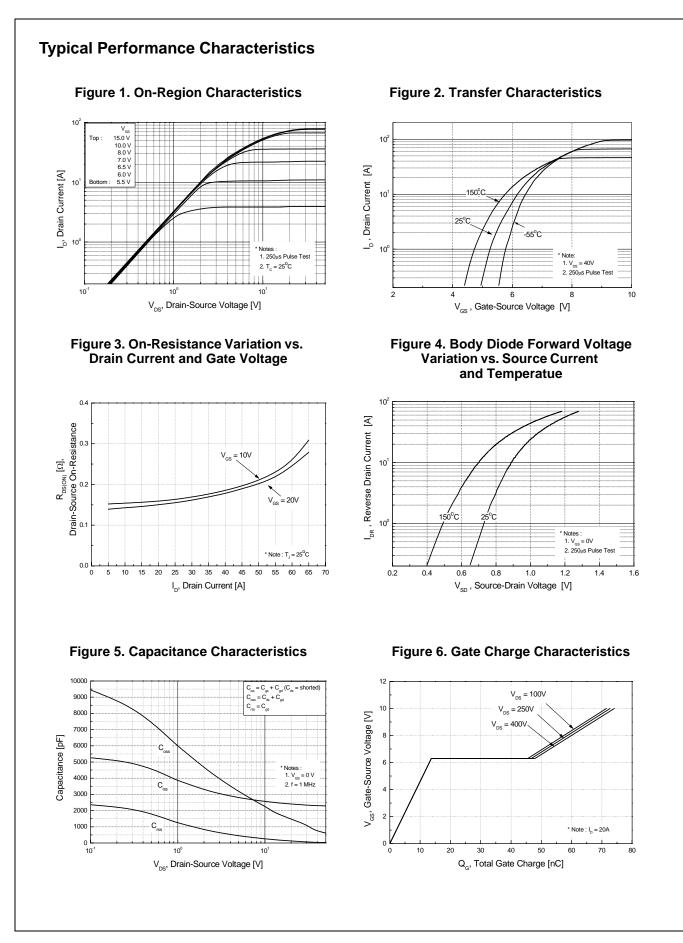
### **Thermal Characteristics**

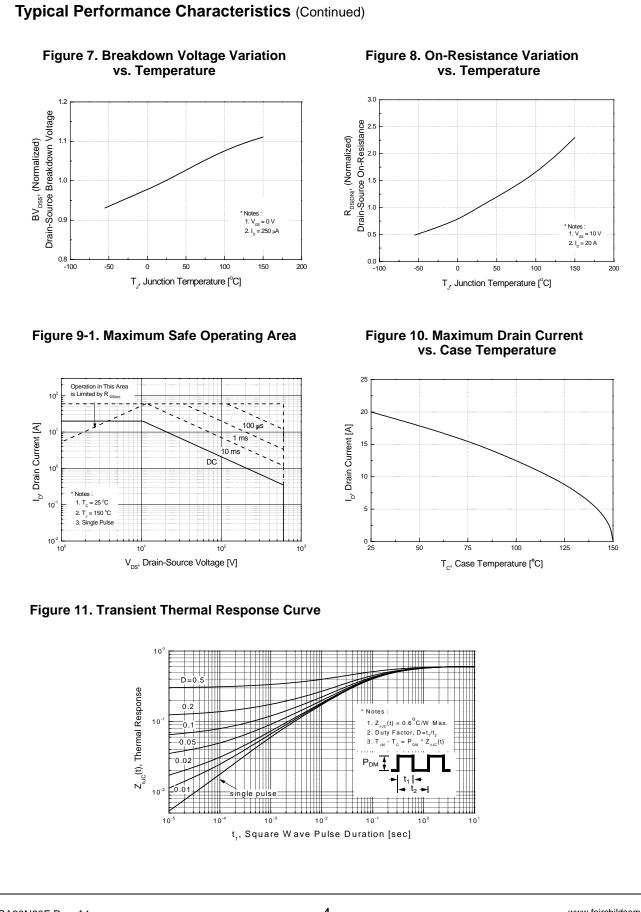
| Symbol              | Parameter                               | FCA20N60F | Unit |
|---------------------|-----------------------------------------|-----------|------|
| $R_{	ext{	heta}JC}$ | Thermal Resistance, Junction-to-Case    | 0.6       | °C/W |
| $R_{\thetaJA}$      | Thermal Resistance, Junction-to-Ambient | 40        | °C/W |

\* When mounted on the minimum pad size recommended (PCB Mount)

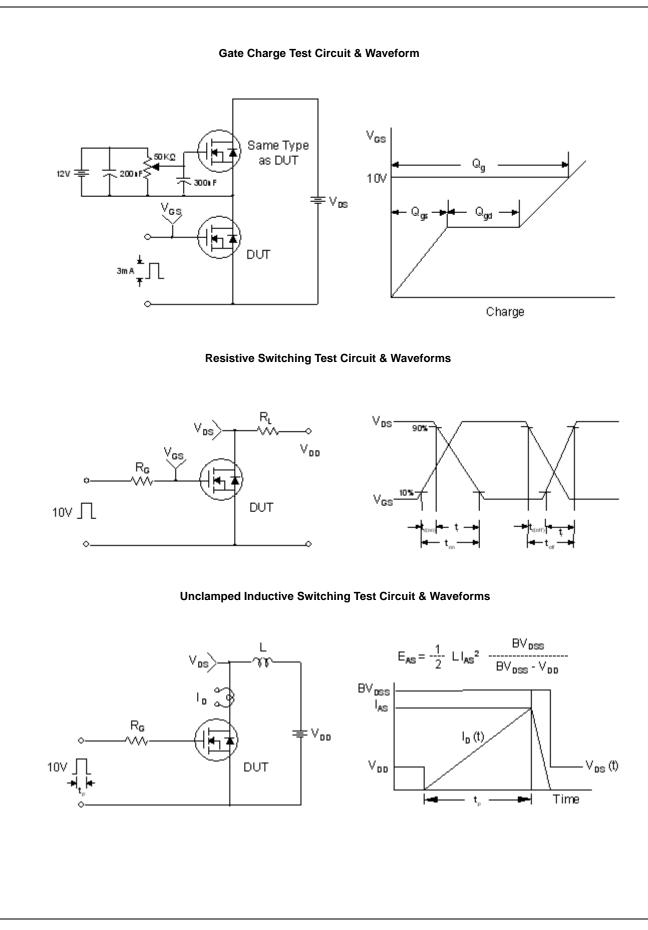
|                                         |                                                 | Package                     | ckage Reel Size Tap    |                                                                       | ape Wid                                                               | th       | Quan | tity      |          |
|-----------------------------------------|-------------------------------------------------|-----------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------|------|-----------|----------|
|                                         |                                                 | TO-3PN                      |                        |                                                                       |                                                                       |          | 30   |           |          |
| Electric                                | al Chai                                         | racteristics T <sub>C</sub> | = 25°C unless otl      | nerwise noted                                                         |                                                                       |          | 1    |           |          |
| Symbol                                  |                                                 | Parameter                   |                        | Conditio                                                              | าร                                                                    | Min      | Тур  | Max       | Units    |
| Off Charac                              | teristics                                       |                             | •                      |                                                                       |                                                                       | •        | •    |           |          |
| BV <sub>DSS</sub>                       | V <sub>DSS</sub> Drain-Source Breakdown Voltage |                             | le V <sub>GS</sub>     | $V_{GS} = 0V, I_D = 250\mu A, T_J = 25^{\circ}C$                      |                                                                       |          |      |           | V        |
|                                         |                                                 |                             | V <sub>GS</sub>        | $V_{GS} = 0V, I_D = 250\mu A, T_J = 150^{\circ}C$                     |                                                                       |          | 650  |           | V        |
| ΔΒV <sub>DSS</sub><br>/ ΔT <sub>J</sub> | Breakdow<br>Coefficier                          | n Voltage Temperature       | e I <sub>D</sub> = 2   | $I_D = 250 \mu A$ , Referenced to 25°C                                |                                                                       |          | 0.6  |           | V/°C     |
| BV <sub>DSS</sub>                       | Drain-Source Avalanche Breakdown<br>Voltage     |                             | lown V <sub>GS</sub>   | V <sub>GS</sub> = 0V, I <sub>D</sub> = 20A                            |                                                                       |          | 700  |           | V        |
| I <sub>DSS</sub>                        | Zero Gate Voltage Drain Current                 |                             |                        | $V_{DS} = 600V, V_{GS} = 0V$<br>$V_{DS} = 480V, T_{C} = 125^{\circ}C$ |                                                                       |          |      | 10<br>100 | μΑ<br>μΑ |
| I <sub>GSSF</sub>                       | Gate-Body Leakage Current, Forward              |                             | orward V <sub>GS</sub> | $V_{GS} = 30V, V_{DS} = 0V$                                           |                                                                       |          |      | 100       | nA       |
| I <sub>GSSR</sub>                       | Gate-Bod                                        | y Leakage Current, Re       | everse V <sub>GS</sub> | $V_{GS} = -30V, V_{DS} = 0V$                                          |                                                                       |          |      | -100      | nA       |
| On Charac                               | teristics                                       |                             |                        |                                                                       |                                                                       |          |      |           |          |
| V <sub>GS(th)</sub>                     | Gate Threshold Voltage                          |                             | V <sub>DS</sub> :      | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                    |                                                                       | 3.0      |      | 5.0       | V        |
| R <sub>DS(on)</sub>                     | Static Drain-Source<br>On-Resistance            |                             | V <sub>GS</sub>        | V <sub>GS</sub> = 10V, I <sub>D</sub> = 10A                           |                                                                       |          | 0.15 | 0.19      | Ω        |
| 9 <sub>FS</sub>                         | Forward 7                                       | ward Transconductance       |                        | $V_{DS} = 40V, I_D = 10A$ (Note 4)                                    |                                                                       | 4)       | 17   |           | S        |
| Dynamic C                               | haracteris                                      | tics                        |                        |                                                                       |                                                                       |          |      | •         | <u>.</u> |
| C <sub>iss</sub>                        | Input Cap                                       | nput Capacitance            |                        | $V_{DS} = 25V$ , $V_{GS} = 0V$ ,<br>f = 1.0MHz                        |                                                                       |          | 2370 | 3080      | pF       |
| C <sub>oss</sub>                        | Output Capacitance                              |                             | f = 1.                 |                                                                       |                                                                       |          | 1280 | 1665      | pF       |
| C <sub>rss</sub>                        | Reverse -                                       | Fransfer Capacitance        |                        |                                                                       |                                                                       |          | 95   |           | pF       |
| C <sub>oss</sub>                        | Output Capacitance                              |                             | V <sub>DS</sub> :      | $V_{DS} = 480V, V_{GS} = 0V, f = 1.0MHz$                              |                                                                       |          | 65   | 85        | pF       |
| C <sub>oss</sub> eff.                   | Effective Output Capacitance                    |                             | V <sub>DS</sub> :      | $V_{DS} = 0V$ to 400V, $V_{GS} = 0V$                                  |                                                                       |          | 165  |           | pF       |
| Switching                               | Characteri                                      | stics                       |                        |                                                                       |                                                                       |          |      |           |          |
| t <sub>d(on)</sub>                      | Turn-On Delay Time                              |                             |                        | $V_{DD} = 300V, I_{D} = 20A$                                          |                                                                       |          | 62   | 135       | ns       |
| t <sub>r</sub>                          | Turn-On F                                       | Rise Time                   | R <sub>G</sub> =       | $R_{G} = 25\Omega$                                                    |                                                                       |          | 140  | 290       | ns       |
| t <sub>d(off)</sub>                     | Turn-Off                                        | Delay Time                  |                        |                                                                       |                                                                       |          | 230  | 470       | ns       |
| t <sub>f</sub>                          | Turn-Off F                                      | Fall Time                   |                        |                                                                       | (Note 4, 5                                                            | 5)       | 65   | 140       | ns       |
| Qg                                      | Total Gate                                      | e Charge                    |                        | $V_{DS} = 480V, I_{D} = 20A$ $V_{GS} = 10V$ (Note 4, 5)               |                                                                       |          | 75   | 98        | nC       |
| Q <sub>gs</sub>                         | Gate-Sou                                        | rce Charge                  | V <sub>GS</sub>        |                                                                       |                                                                       |          | 13.5 | 18        | nC       |
| Q <sub>gd</sub>                         | Gate-Drai                                       | in Charge                   |                        |                                                                       |                                                                       | 5)       | 36   |           | nC       |
| Drain-Sour                              | ce Diode (                                      | Characteristics and N       | laximum Ratir          | ngs                                                                   |                                                                       | <b>I</b> |      |           |          |
| I <sub>S</sub>                          | Maximum                                         | Continuous Drain-Sou        | urce Diode For         | de Forward Current                                                    |                                                                       |          |      | 20        | А        |
| I <sub>SM</sub>                         | Maximum Pulsed Drain-Source Diode Fo            |                             |                        | orward Current                                                        |                                                                       |          |      | 60        | Α        |
| V <sub>SD</sub>                         | Drain-Sou                                       | urce Diode Forward Vo       | Itage V <sub>GS</sub>  | V <sub>GS</sub> = 0V, I <sub>S</sub> = 20A                            |                                                                       |          |      | 1.4       | V        |
| t <sub>rr</sub>                         | Reverse I                                       | Recovery Time               |                        | = 0V, I <sub>S</sub> = 20A                                            |                                                                       |          | 160  |           | ns       |
| Q <sub>rr</sub>                         | Reverse I                                       | Recovery Charge             |                        |                                                                       | $\frac{dI_{F}/dt}{dI_{F}/dt} = 100 \text{ A/} \mu \text{s} $ (Note 4) |          | 1.1  |           | μC       |

### NOTES:


1. Repetitive Rating: Pulse width limited by maximum junction temperature

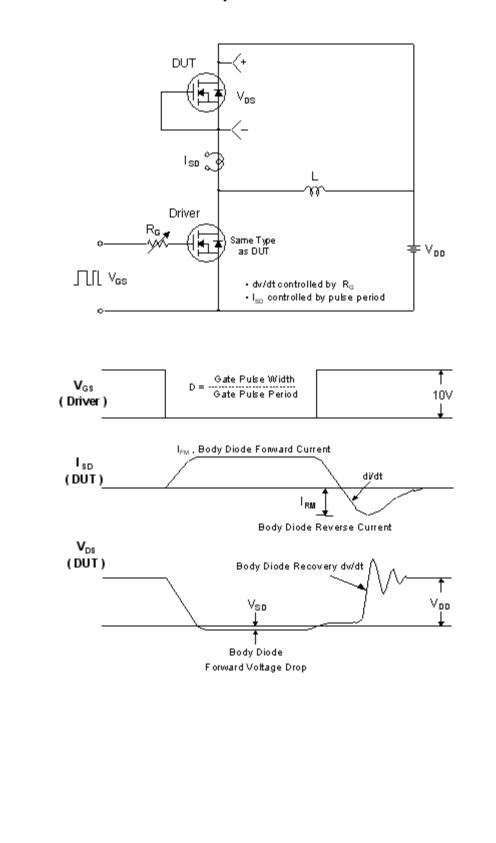

2.  $I_{AS}$  = 10A,  $V_{DD}$  = 50V,  $R_{G}$  = 25 $\Omega$ , Starting  $T_{J}$  = 25 $^{\circ}C$ 

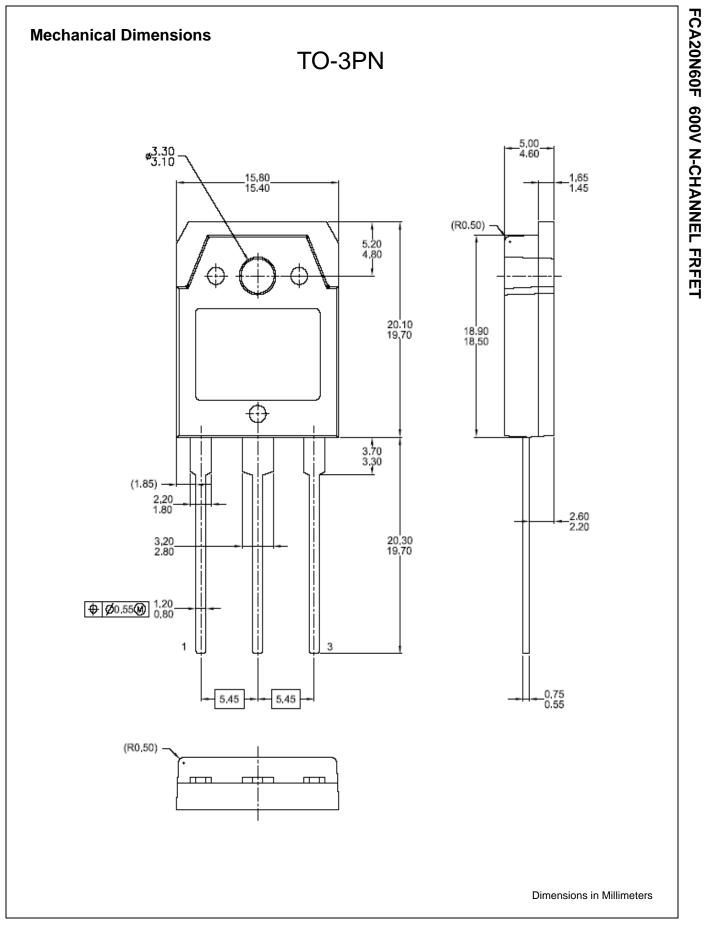
3. I\_{SD}  $\leq$  20A, di/dt  $\leq$  1200A/µs, V\_{DD}  $\leq$  BV\_{DSS}, Starting T\_J = 25^{\circ}C


4. Pulse Test: Pulse width  $\leq 300 \mu \text{s}, \, \text{Duty Cycle} \leq 2\%$ 

5. Essentially Independent of Operating Temperature Typical Characteristics







FCA20N60F 600V N-CHANNEL FRFET



FCA20N60F 600V N-CHANNEL FRFET

### Peak Diode Recovery dv/dt Test Circuit & Waveforms







SEMICONDUCTOR

#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

| Build it Now™              | FRFET <sup>®</sup>                  | Programmable Active Droop <sup>™</sup>  | the           |
|----------------------------|-------------------------------------|-----------------------------------------|---------------|
| CorePLUS™                  | Global Power Resource <sup>SM</sup> | QFĔT <sup>®</sup>                       | p∪wer         |
| CorePOWER™                 | Green FPS™                          | QS™                                     | franchise     |
| CROSSVOLT™                 | Green FPS™ e-Series™                | Quiet Series <sup>™</sup>               | TinyBoost™    |
| CTL™                       | GTO™                                | RapidConfigure™                         | TinyBuck™     |
| Current Transfer Logic™    | IntelliMAX™                         |                                         | TinyLogic®    |
| coSPARK <sup>®</sup>       | ISOPLANAR <sup>™</sup>              | Т                                       | TINYOPTO™     |
| fficentMax™                | MegaBuck™                           | Saving our world, 1mW /W /kW at a time™ | TinyPower™    |
| ZSWITCH™ *                 | MICROCOUPLER™                       | SmartMax™                               | TinyPWM™      |
| <b>— — </b>                | MicroFET™                           | SMART START™                            | TinyWire™     |
| <b>→</b> /                 | MicroPak™                           | SPM®                                    | µSerDes™      |
| <b>R</b>                   | MillerDrive™                        | STEALTH™                                | $\mathcal{U}$ |
|                            | MotionMax™                          | SuperFET™                               | SerDes        |
| airchild®                  | Motion-SPM™                         | SuperSOT™-3                             | UHC®          |
| airchild Semiconductor®    | OPTOLOGIC®                          | SuperSOT™-6                             | Ultra FRFET™  |
| ACT Quiet Series™          | <b>OPTOPLANAR</b> <sup>®</sup>      | SuperSOT™-8                             | UniFET™       |
| FACT®                      | ®                                   | SupreMOS™                               | VCX™          |
| AST®                       |                                     | SyncFET™                                | VisualMax™    |
| FastvCore™                 | <u> </u>                            | SYSTEM ®                                | XS™           |
| FlashWriter <sup>®</sup> * | PDP SPM™                            | GENERAL                                 |               |
| PS™                        | Power-SPM™                          | The Power Franchise <sup>®</sup>        |               |
| -PFS™                      | PowerTrench <sup>®</sup>            | The Fower Flanchise                     |               |
|                            | PowerXS™                            |                                         |               |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### PRODUCT STATUS DEFINITIONS Definition of Terms

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |
|                          |                       | Rev                                                                                                                                                                                                 |